Certified MACH Architect ### Exam Guide The Certified MACH Architect exam has been designed to validate core skills for architects who design, manage, and deploy complex composable solutions using established MACH principles. ## Target Exam Role/Minimally Qualified Candidate Successful candidates should have the following experience: - 1 to 2 years of full-time experience leading MACH projects and driving multiple transformation projects - A similar amount of time performing the job tasks as reflected in the Exam Objectives in the table below #### **Exam Details** Number of questions: 60 Time allotted to take the exam: 120 minutes Passing Score: 70% Language Offered: English Exam Format: Multiple choice and multiple response Resources Available: None permitted during exam #### **Exam Topics and Content** The exam contains question items that cover the areas for the stated role as shown in the chart immediately below: | Category | Domain | Sub Topic | Exam Objectives | |----------|----------------------|---------------|--| | MCA 1 | | | | | Plan | MACH
Fundamentals | Core Concepts | Explain major MACH benefits: growth
enablement, cost optimization, and risk | | | | | 1 | |-------|----------------------|------------------------------|--| | | | | reduction Explain major drivers for MACH adoption: speed, flexibility, and integration Differentiate MACH front end design from traditional design patterns Define Monolith, PBC (Packaged Business Capabilities), and Microservices Define hosting & deployment models for MACH Evaluate key MACH application benefits for a given case: Agility, Scalability, Flexibility, and Control Select correct design statements for a Composable Business Architecture | | Plan | MACH
Fundamentals | Composable
Design | Select correct design statements for a
Composable Business Architecture | | Plan | MACH
Fundamentals | PBC Anatomy | Define the 4 core elements of a PBC (Modularity, Autonomy, Discoverability, Orchestration) | | MCA 2 | | | | | Plan | Strategy | Project
Management | Develop a business case to define project KPIs/OKRs Determine TCO with MACH technologies using available resources Define roles and responsibilities for all workstreams (PM, design, tech architecture, development, etc.) Create a roadmap of summary milestones, defining project scope evolution Document specific deliverables and connect them to KPIs/OKRs | | Plan | Strategy | Executive
Summary | Develop a summary presentation
illustrating project scope for stakeholders | | Plan | Strategy | Organizational
Engagement | Lead workshops exploring composable solutions for business challenges Use MACH tools to measure, track, and improve diversity, equity, inclusion, and belonging (DEIB) | | Plan | Strategy | Strategy
Alignment | Define frameworks for aligning business and technology when designing Microservices Place selected applications in the pace-layered application model Assess a given organization's MACH readiness with available tools | | Plan | Strategy | Planning | Plan architecture to support future | | | | | | | | | | business needs with composable thinking | |-------|---------------------------|-------------------|---| | MCA 3 | | | | | Plan | Governance | Best Practices | Develop guidelines and best practices for implementing composable architectures. | | Plan | Governance | IT Governance | Define a governance framework for
managing composable IT practices | | Plan | Governance | Gap Analysis | Conduct gap analysis between AS-IS and TO-BE architectures Analyze AS-IS architecture to identify weaknesses and strengths Produce an assessment document outlining AS-IS architecture | | Plan | Requirements
Gathering | Product | Evaluate functional requirements for technical enablement | | Build | Solutioning | Product | Evaluate functional requirements for
technical enablement Review and incorporate customer journey
maps and service blueprints (front-stage &
back-stage processes) | | | | MCA 4 | 4 | | Build | Solutioning | UX | Review and incorporate information
architecture, content models, and
interaction design Evaluate or review visual designs and/or
design style tiles | | Build | Solutioning | Tech Architecture | Develop data models and integration plans (including API brokering) Select technology stack and MACH vendors, and map to the project roadmap Design and document TO-BE architecture (objectives, constraints, standards) Design and develop APIs following best practices including security | | Build | Solutioning | Security | Establish security protocols (zero trust, authentication, encryption, etc) | | Build | Solutioning | Testing Strategy | Lead testing strategy (unit, integration,
end-to-end testing) in collaboration with
QA team | | MCA 5 | | | | | Build | Technology
Enablement | Design | Identify stages of atomic design for frontend application development | | Build | Technology
Enablement | Tech Architecture | Ensure compliance with regulations in composable system designs | | | |--------|--------------------------------|------------------------|---|--|--| | Build | Technology
Enablement | Al | Identify AI statements as composable or isolated AI components Apply MACH principles to Generative AI solutioning Identify practical considerations when embedding Generative AI solutions in MACH environments | | | | | | MCA 6 | 6 | | | | Build | Implementation | Tech Enablement | Set up development, staging, and production environments (MACH compliant) Implement CI/CD pipeline and code repository setup | | | | Build | Implementation | UX | Develop a design system (managed by
Storybook or similar tools) | | | | Build | Implementation | Scrum
Management | Develop backlog, conduct story pointing,
and manage sprint planning | | | | Build | Implementation | Development | Implement sprint tasks, migrate content/data, build integrations, and conduct unit testing | | | | | MCA 7 | | | | | | Build | Deployment | Deployment
Planning | Develop launch plans, optimize for launch, and document training materials | | | | Build | Deployment | Testing | Validate final integrated testing | | | | Build | Deployment | Launch | Launch the application, define a deployment process (CI/CD, rollback strategies) | | | | | MCA 8 | | | | | | Run | Deployment | Knowledge
Transfer | Transition to the maintenance team, conduct post-deployment reviews | | | | Run | Post-Deployment and Operations | Optimization | Define and utilize optimization metrics to identify benefits achieved | | | | Run | Post-Deployment and Operations | Operating Model | Ensure transition of the operating model for ongoing operations | | | | MCA 9 | | | | | | | Manage | Strategy | Strategy Alignment | Align strategies based on composable principles and business goals | | | | | | | | | | | Manage | Strategy | Operating Model | Define Operating Model development explicitly | |--------|--------------------------------|------------------------|--| | Manage | Governance | Impact Assessment | Assess ecosystem changes to determine impact on composable architecture | | Manage | Governance | Migration Planning | Define a comprehensive data migration plan | | Manage | Solutioning | Tech Architecture | Evaluate System Integrators for composable competencies | | Manage | Solutioning | Modernization | Modernize the application landscape by
decomposing System of Records into PBC
and microservice solutions | | Manage | Deployment | Release Strategy | Outline a release and git flow strategy | | Manage | Implementation | Scrum
Management | Conduct initial tasks that need to be completed before starting an agile delivery | | Manage | Post-Deployment and Operations | Benefits
Assessment | Conduct post-implementation reviews to
assess benefits of new composable
systems explicitly |